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STATIONARY LONG WAVES IN A LIQUID FILM
ON AN INCLINED PLANE

Yu. A. Buevich and S, Vv, Kudymov UDC 532,51+532,62

The nonlinear equations describing wave flow of a thin liquid film are normally obtained with the aid of
assumptions as to the character of the distribution of the transverse velocity component over the film thick-
ness. Such an approach was used with a system of two equations for liquid flow rate and film thickness devia-
tion from the value corresponding to nonwave laminar flow in [1-3]. In [4~6] a unique evolution equation for
film thickness was also obtained with a method similar to the conventional Karman—Polhausen technioue. In
this case the question of the range of applicability of the equation obtained and the accuracy of its description
of the wave process arises. To answer this question one must obviously use direct methods to derive the evo-
lution equation, with simultaneous definition of the velocity profile within the film [7-91, This will be done he-
low for small Reynolds numbers for a flow on an inclined plane (considered previously in [6, 10, 11]). One of
the equations obtained is suitable for study of slightly nonlinear stationary traveling waves. In contrast to
previous studies of stationary regimes, all parameters of such waves are defined uniquely.

1. Flow in the Film. We introduce the dimensionless variables and parameters

7
__uo , _1" _y_' Uy ~1 Ux
t—'x‘t, z—’}:z y—ho’ v, "—,Z l);! 9 (1.1)
h—k Re ugh h
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T= cosa’we_‘?h%’ u"—( 3 v Q" ko = cosa g/ °

Here the primes denote the corresponding dimensional variables, « is the angle of inclination of the
plate to the vertical, A is the characteristic longitudinal scale, u, and h; are the mean film velocity and thick-
ness in the nonwave regime. The equations describing the motion written in the variables of Eq. (1.1) have the
form

. : .
v, . v, ov dv . i) %
e Re _’_c__[_y _x—-j‘—md Xy _* e? 2% __
\ e T )5 Yo | = 57 + Py (1.2)
ap 3. oR dv,. aﬁy youx avy' 32?5‘ 23209 P _g v, v,
gt eRel Gtu gt — Y Fdy gt | =gt e e gy OB G = —eg
g ‘ LR 0= .

The boundary conditions for Eq. (1.2) at y = 0 have the form
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Uy = vy = 0; (1.3)
andat y=1+ vy,

v, dv. i) Uy 0@
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In addition, we will employ the following consequence of the continuity equation

1+Acp

dp , @ _ 1.

d';'“f“,g; j Uedy = 0. (1.5)

1]

Usually Eq. (1.5) is considered together with the first equation of Eq. (1.2) integrated over film thick-
ness; sometimes the integral of vy is eliminated from this system of two equations. In any case information
on the dependence of vgx upony is required.

Below we will consider the long wave parameter £ to be small, and solve Ecs, (1.2)~(1.4) by the small
parameter method. To do this it is necessary to take eRe « 1, i.e,, the Reynolds number cannot be too large,
In the general case the quantity ¢ and the parameters € tg o and T may be of the order of unity, which per-
mits consideration of the flow of liguids with high surface tension over planes slightly inclined to the horizon-
tal, where a significant contribution to wave formation can be produced by gravitational waves. (For example,
for water at cos @ ~ 1 and Re ~ 1 we have T ~ 10%5, so that for real long waves the parameter T is not
necessarily always small.)

Taking

n=0

o (n) oo
Ug N\ Uy ® ,
{U}ZZE{W},-P:%"["ES"Pm
y Uy n=g
we obtain the zeroth approximation to the problem of Egs. (1.2)-(1.4):
O (3+ e (p) (1+<p—~)y, Sy (1.6)

P*=—T o py=3tga(l+o—y).

Considering terms on the order of & in Egs. (1.2)-(1.4) and using Eq. (1.6), we obtain and solve the
first approximation problem, We will present only the expression for vgy:

5
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In Eq. (1.7) we have introduced the following functions of ¢ and its derivatives:
oF a*p '
Vy= at’ V= (Hﬁ——Tata 3)1; (1.8)
V, ﬁ-—«TG vV, ~—TG n_1+cp,
- e _ e

The expressions for v§2) and vg’ in Egs. (1.6), (1.7) define the velocity profile in the film in the first ap-

proximation in terms of the long-wave parameter. This profile differs quite significantly from the parabolic
one normally postulated.

2. Evolution Equations, Now calculating the integral of Eq. (1.5), we have

s o 1, 0%\ - 8 8 5 35 T g, 2 '
£+%[(1+?T?§F)"a]“Sa[tg“a—i’l“+P‘e(z’z;"2+%"s"+aa‘,’4“2+zﬂ’5”3)“4]:"’ (2.1)
where the values of V; are defined by Eq. (1.8).

Limiting our study to slightly nonlinear waves (¢ « 1), from Eq. (2.1) we can easily obtain various
special variants of the evolution equation, It is of great importance that we immediately consider the relation-
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ship between the small parameters & and ¢. For example, if eRe S ¢ 2 thenat etga ~ land T~ 1, by re-
placing the derivative 8/9t in the higher order terms of Eq. (2.1) by —38/9x in accordance with the linearized
form of Eq. (2.1), we obtain

? 2399 | @ 4 0% @ 2 5
%““3(1+(P)‘£+$[(1+3(P+3(I>2)(§‘T£;2“3tga5§ﬂ +83e(§§x—f+%§6T%‘§) ~0. (2.2)

But the equations obtained are generally inapplicable at € Re ~ ¢, In fact, use of Eq, (2,2} with consid-
eration of terms third order in ¢ would imply an increase in accuracy in this case., Moreover, in this case
there is no guarantee that the terms of order (& Re)?y, which were not considered in Eq. (2.1), are in fact
smaller than the retained terms which are third order in v and zeroth order in &. These simple considera-
tions are quite often ignored in film flow studies.

In the case where € tg o « land T « 1, from Eq. (2.2) we obtain the equation
P 3 6 " 1
% L34 g2 e(LRe—tga) T84 LT ZE -, (2.3)

which transforms to the well-known equation, if we neglect terms of order ¢?, It is obvious that this is ade-~
quate if (aRe)2 « Y < (g Re)l/z. If the first inequality is not satisfied, then together with terms of order @*
one must consider terms of order &*y which were omitted in Egs, (2.1)-(2.3), while when the second inequal-
ity is not satisfied in Eq. (2.3) terms ~y* cannot be neglected,

3. Stationary Wave Regime, For simplicity, we will consider stationary traveling waves only for tg o s,
TS e, As is well known [12] (but not always considered in film flow studies), in analysis of a wave regime
which is elose to harmonic, to the accuracy of terms quadratic in the amplitude of the fundamental, one must
retain in the evolution equation all terms up to third order in the amplitude. Therefore, we will use an equa~
tion in the form of Eq. (2.3). Choosing the longitudinal scale equal to h; (¢ = 1), we rewrite Eq. (2.3) in the
form

a9 YL o%p 2g 6 ‘ _ We
T3t g+ A+ B =0, A=gRe—tga, B=go (3.1)
If a stationary periodic regime is established in the system, characterized by a wavelength A, then we
have
& ) k
Q= E @™ o =Q—iy, k=2n7, (3.2)
N=—co . ’

where k, @, and A are real, and the fact that ¢ is real gives &.p = ‘1’;’ where the asterisk denotes the com-
plex conjugate. Limiting ourselves to terms of order g = &,&.; = | &;|%, we consider in Eq. (3.2) only har-
monics with |n| = 2. From Egs. (3.1), (3.2) we obtain

[i (@ — 3%) + Bkt — AR?] @; — 6ik@®; — 6ikD_y ®, — 3ikD_, D} =0,

[i (0 — 3K) -+ 8BK* — 24K%) @, — 3ik®} = 0. (3.3)

From this it follows that
j s g L — 3ik | q — 6ik®, =0 54
i (@ — 3k) 4 Bkt — +[i(m__3k)+83k4_2Ak2 - 63k @y = 0. (3.4)

This last equation defines w (and consequently, both @ and y) as a function of the dimensionless wave
number k and the square of the amplitude g. As g — 0, from Eq, (3.4) we obtain the familiar dispersion equa-
tion, following from linear theory (we use &, ~ qg). In the case considered, considering the smallness of g, we
write € = Q(k) + Q,(k)g, y = T'y(k) + Th(k)q.

The stationary regime obviously corresponds to a zero oscillation increment; from this we have y = 0
for the two unknowns k and q. We obtain the second equation from the requirement that this value correspond
to the maximum value of y, considered as a function of k for fixed q [12]. This requirement is also equivalent
to the condition of maximum g considered as a function of k. Thus, we have two equations defining k and q:
Ty(k) + Tp(k)g = 0, d Ty (k)/dk + d 'y (k)g/dk = 0.

The calculations can be simplified by noting that the value of Q@ differs little from the value &, = 3k, ob-
tained from linear theory, This permits neglect of the guantity i(Q — 3k) in the term in Eq. (3.4) proportional
to g, so that to the selected accuracy we obfain
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Ty(k) = Ak* — BE*, Ty(k) = 18(4 — TBE*),
and the equations for k and q take on the form )
q = (k¥/18}A — BE®)(TBE* — A),
(A — 2Bk)(TBk® — A) + TBRA — Bk?) = 0. (3.5)

The solution of the second equation of Eq. (3.5) has the form

16+VIT A2 (_A_)m 3
k:_(——42— -F) ~0.833(4)", (3.6)
so that the square of the amplitude
g =~ 0,04643%/B. (3.7)

Taking &= \[_qT, which can always be done by appropriate choice of the origin in time or longitudinal co-
ordinate, from the second equation of Eq. (3.3) we obtain an expression for &,. The value of ¢, is defined
from the condition that the dimensionless liquid flow rate in the film must equal its specified value (unity in
the variables of Eq, (1.1)) even in the presence of waves. As a result, to the same accuracy, with considera-
tion of Eqgs. (3.6), (3.7), we obtain

@, ~ —2, D, ~ 0.935BY24i/ 45> ~ 004345/ BI, (3.8)
Therefore, according to Egs. (3.4), (3.8) the wave velocity has the form
¢ = Uk = 31 — 3g) = 3(1 — 0,13843%/B), (3.9)

and the quantity ¢ takes on the following final form:

99 ‘43 0.429 Aa/z ) Ave
o —0.092 5 +0.42 57 608 k(z—ct) -+ 0.086—8—72 sin 2k (x — ¢t),
with k and c being defined by Egs. (3.6), (3.9).

We note that k from Eq. (3.6) differs significantly from the value k, = (A/2B) Y2~ 0,707 (A/B)V?, which
follows for maximum growth waves from linear theory., The condition for instability of nonwave laminar flow
has the form A > 0. When it is satisfied a ''soft'! type of stability loss occurs: with increase in the ''super-
criticality" of A the value of q increases monotonically from zero {12, 13]. The stationary wave regime con-
sidered proves to be completely defined, in contrast, for example, to the results of [1, 2].

The conditions & « 1 and ql/2 <« 1 have the respective forms (A/B)l/2 « 2r~ 102~ 10 and A(A/B)i/2
<« 10Y2— 10. The condition & S g, which allows us to neglect (at Re ~ 1) all terms except linear ones in the
portion of Eq. (2.3) which is proportional to &, now takes on the form A¥BZ (A/B) Y2, i.e, A¥2 2 BY2, If with
slightly supercritical A the parameter B is much greater than A® (as must be the case for liquids with high
surface tension or under lowered gravitation), terms quadratic in ¢ must be considered in this portion of the
equation, In conclusion, we note that attempts (see, for example, [11, 14]) to obtain the coefficients for the
higher harmonics in Eq. (3.2) by analysis of equations of the form of Eq. (3.1) are meaningless, since the ac-
curacy of the equation is exceeded.
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EXPERIMENTAL STUDY OF BUOYANT VORTEX
RINGS

B. I. Zaslavskii and I, M. Sotnikov UDC 532.517.4

Experimental study of the dynamics and the internal structure of buoyant vortex-thermals was initiated
in the 1950s. A review of work done outside the Soviet Union is given in [1]. Problems associated with the mo-
tion of thermals are discussed in Soviet publications {2~5]. Experimental data from early as well as those ob-
tained from later studies do not cover many aspects of these phenomena and even contradict each other in
some cases, The objective of the present investigations is to study as completely as possible the motion of
thermals for various values of initial weight defect. The experimental setup and the test results are described
in this paper.

1. The setup is shown in Fig, 1, It consists of: a 1.2X 1,2x 5 m airtight container with transparent side
walls; a device (D) for producing thermals; pneumatic and measurement systems. The last mentioned consists
of hot-wire anemometers (DISA), movie-(K) and photographic camera, stroboscope, and also an apparatus for
visualization of thermals, '

The device to produce thermal consists of a nozzle with a funnel shaped tip 4 to blow soap bubble and a
trigger to puncture the membrane,

The nozzle is connected by a rubber hose to the smoke generator (Gg) and further to the mixer (M)
where helium, nitrogen, and oxygen were fed from tanks, The partial pressures of each gas in the mixer were
measured with the manometer MVP-2,5 which enabled the determination of density with less than 1% error.

The density was varied in the tests by altering the proportions of helium and nitrogen. Oxygen consti-
tuted 2.5% by volume in all the tests, It was supplemented by tobacco smoke which was introduced into the
soap l?ubble for coloring it. A small amount of oxygen ensured low smokiness and, consequently, small rela-
tive eir"rors in the final determination of the initial density of the thermal,

\JThe trigger consists of an electromagnet 2, a spoke 3 with a needle at its end.

"The film is ruptured when the needle punctures the bubble during its descent which began after the ap-~
plication of the starting voltage to the electromagnet and lasted about 0.02 sec,

Besides the device for producing thermals (setup at the bottom of the container) there is a vertical sup-
port 5 to which thin streamlined probes 6 are attached at three levels. The anemometer wires are fixed to the
probe tips in such a way that their axes coincide with the central axes of the nozzle and the container. Leads
from the hot-wires are brought out from the top of the container and connected to hot-wire anemometers whose
signals were recorded with automatic recorder H 338.

Flow visualization of the mixture colored by smoke was made with the help of electronic flash (Fy) and
optical knife laser beam (L) LG-106M which is propagated in a fan shaped manner with the help of the convex
mirror 3. The thermal visualized in such a manner was photographed during its motion by the cameras Fy and
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