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S T A T I O N A R Y  L O N G  W A V E S  IN A L I Q U I D  

ON AN I N C L I N E D  P L A N E  

Yu.  A .  B u e v i c h  a n d  S. V. K u d y m o v  

FILM 

UDC 532.51+532.62 

The nonl inear  equations desc r ib ing  wave flow of a thin l iquid f i lm a re  n o r m a l l y  obtained with the aid of 
assumpt ions  as to the c h a r a c t e r  of the d i s t r ibu t ion  of the t r a n s v e r s e  ve loc i ty  component over  the f i lm th ick-  
ness .  Such an approach was used with a s y s t e m  of two equations for  l iquid flow ra te  and f i lm thickness  dev ia -  
tion f rom the value cor respond ing  to nonwave l a m i n a r  flow in [1-3] .  In [4-6] a unique evolution equation for 
f i lm th ickness  was a lso  obtained with a method s i m i l a r  to the conventional  K a r m a n - P o l h a u s e n  technieue.  In 
this case  the quest ion of the range of appl icab i l i ty  of the equation obtained and the a c c u r a c y  of i ts desc r ip t ion  
of the wave p roce s s  a r i s e s .  To answer  this quest ion one must  obviously use d i r e c t  methods to der ive  the evo- 
lution equation, with s imul taneous  definit ion of the veloci ty  prof i le  within the f i lm [7-9] .  This will be done be -  
low for smal l  Reynolds numbers  for  a flow on an incl ined plane (cons idered  p rev ious ly  in [6, 10, 11]). One of 
the equations obtained is sui table  for  study of s l ight ly  nonl inear  s t a t iona ry  t r ave l ing  waves.  In con t r a s t  to 
previous  s tudies  of s t a t i ona ry  r e g i m e s ,  a l l  p a r a m e t e r s  of such waves a r e  defined uniquely. 

1. Flow in the F i lm.  We introduce the d imens ion les s  v a r i a b l e s  and p a r a m e t e r s  

u~ ' Y', = ~ , , (1.1) t =  r t ,  z=-.z,, y=ro vy 

h -- h 0 ]Re u0h0 ha 
q~ = h---~' p = pu~ p,oRe = . -~ , e ~ - , ~  

= c o s ~ " '  Ogho \ - - 3 - u  "~ ' ~ T /  " 

Here the p r i m e s  denote the co r respond ing  d imens iona l  va r i a b l e s ,  a is  the angle of incl inat ion of the 
plate  to the ve r t i ca l ,  X is the c h a r a c t e r i s t i c  longitudinal  sca le ,  u 0 and h 0 a r e  the mean f i lm ve loc i ty  and thick-  
hess  in the nonwave reg ime .  The equations desc r ib ing  the motion wr i t ten  in the v a r i a b l e s  of Eq. (1.1) have the 

fo rm 

t : ~[$ 
Ov~ . Ov x i" Ovan 

\ . .  o . / 

The boundary conditions for  Eq. (1.2) a t  y = 0 have 

0V5c~ Onv~o jr_ 8 n OnYx 

0% Ov~ 0% v " ~ Onvv 0 p .  3 tg r = 

the form 

(1.2) 
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vx = v u = 0 ;  (1.3) 

and at y =  1+ q~, 

(1.4) 

2., ~ yu~ + s a%'] ~ -- ~-[t  ~162 
- L l - - - -  \Ox ) J Ox ] Ox 

In addition, we will employ  the following consequence  of the cont inui ty  eauat ion 

t o~ + o__ v j y  = 0.  ( 1 . 5 )  
Ot Ox  

o 

Usual ly  Eq. (1.5) is cons ide red  t oge the r  with the f i r s t  equat ion of Eq. (1.2) in tegra ted  o v e r  f i lm thick-  
ness ;  s o m e t i m e s  the in tegra l  of v x is e l imina ted  f r o m  this s y s t e m  of two equat ions .  In any case  in fo rmat ion  
on the dependence  of v x upon y is r equ i red .  

Below we will c o n s i d e r  the long wave p a r a m e t e r  e to be smal l ,  and solve  Eas .  (1 .2) - (1 .4)  by the smal l  
p a r a m e t e r  method.  To do this it is n e c e s s a r y  to take e r e  << 1, i .e . ,  the Reynolds  n u m b e r  cannot  be too la rge .  
In the gene ra l  case  the quant i ty  ~ and the p a r a m e t e r s  e tg o~ and T may  be of the o r d e r  of unity, which p e r -  
mi ts  cons ide ra t i on  of the flow of l iquids with high s u r f a c e  tens ion o v e r  p lanes  s l ight ly  incl ined to the h o r i z o n -  
tal, where  a s igni f icant  cont r ibut ion  to wave f o r m a t i o n  can be p roduced  by g rav i t a t iona l  waves .  (Fo r  example,  
for  wa te r  at  cos ~ ~ 1 and Re ~ 1 we have T ~ 10% 3 , so that fo r  rea l  long waves the p a r a m e t e r  T is not  
n e c e s s a r i l y  a lways  sma l l . )  

Taking 

we obtain the ze ro th  app rox ima t ion  to the p r o b l e m  of Eqs.  (1 .2 ) - (1 .4 ) :  

v~  ~  3 j ~ O, 

P*=- -Ta~q~  p 0 = 3 t g & ( f + q ~ - y ) .  
Ox 27 

Cons ider ing  t e r m s  on the o r d e r  of  e in Eqs.  (1 .2) - (1 .4)  and us ing Eq. (1.6),  we obtain and solve the 
f i r s t  app rox ima t ion  p rob lem.  We will p r e s e n t  only the e x p r e s s i o n  fo r  v ~ :  

= - -  0~ 5 V~ . 3 0qv ~ R e Z  v~ ) 3 t g a ~ x q + R e  .-(-Tl, g +.~tgau~zg + g~+!. (1.7) 
i = 2  

In Eq. (1.7) we have in t roduced  the following funct ions of  ~0 and its de r iva t i ve s :  

V~=T( , V~ y . n T x - -  OtOx3],: (1.8) 
i i 

V4= - - ~  TG, Vs =~2q TG, ~l= f+q~,  

a~q~ " ( T ~ n, H 0% F 3~0+T-~x3n , H = k 3 +  -~-j} G =  - -  
0 z 4  " 

The e x p r e s s i o n s  for  V(x ~ and v~ ) in Eqs.  (1.6) ,  (1.7) define the ve loc i ty  prof i le  in the f i lm in the f i r s t  ap-  
p rox ima t ion  in t e r m s  of  the long-wave  p a r a m e t e r .  This p rof i l e  d i f fe rs  quite s ign i f ican t ly  f r o m  the pa rabo l i c  
one n o r m a l l y  postula ted .  

2. Evolut ion Equat ions .  Now ca lcu la t ing  the in tegra l  of Eq. (1.5),  we have 

-j-F+~ l-b. TI-~-~xs)ll ~ - - 8 ~ [ t g - ~ 1 6 2  ] 0, (2.1) 
. ~Tx'l = 

where  the values  of  V i a r e  defined by Eq. (1.8).  

L imi t ing  our  s tudy to s l ight ly  non l inea r  waves  (~ << 1), f r o m  Eq. (2.1) we can eas i ly  obtain va r ious  
spec ia l  va r i an t s  of the evolut ion equation. It is of  g r e a t  impor t ance  that we i m m e d i a t e l y  c o n s i d e r  the r e l a t ion -  
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sh ip  be tween  the s m a l l  p a r a m e t e r s  e and  r  F o r  e x a m p l e ,  i f e R e < ~  ~2, then a t  a t g o z  ~ 1 and T ~  1, b y r e -  
p l a c i n g  the d e r i v a t i v e  O/Ot in the h i g h e r  o r d e r  t e r m s  of Eq. (2.1) by  - 3 a / 3 x  in a c c o r d a n c e  with the l i n e a r i z e d  
f o r m  of  Eq. (2 .1) ,  we ob ta in  

But the equa t ions  o b t a i n e d  a r e  g e n e r a l l y  i n a p p l i c a b l e  a t  e Re ~ ~ .  In fact, u s e  of Eq. (2.2) with e o n s i d -  
e r a t i o n  of  t e r m s  t h i r d  o r d e r  in ~ would i m p l y  an i n c r e a s e  in a c c u r a c y  in th i s  e a s e .  M o r e o v e r ,  in th is  e a s e  
t h e r e  i s  no g u a r a n t e e  tha t  the t e r m s  of o r d e r  (e R e ) 2 ~ ,  which w e r e  not  c o n s i d e r e d  in Eq. (2 .1) ,  a r e  in fac t  
s m a l l e r  than the r e t a i n e d  t e r m s  which a r e  t h i r d  o r d e r  in ~o and z e r o t h  o r d e r  in a. T h e s e  s i m p l e  c o n s i d e r a -  
t ions  a r e  qui te  of ten i g n o r e d  in f i l m  flow s t u d i e s .  

In the e a s e  w h e r e  a tg a << 1 and T << 1, f r o m  Eq. (2.2) we ob ta in  the  equa t ion  

~7-+ 3(i-~- ~ ~ - ~  - g - l % - - t g a  = j - T - -  = 0, (2.3) 
0x 4 

which t r a n s f o r m s  to the  w e l l - k n o w n  equa t ion ,  if  we n e g l e c t  t e r m s  of  o r d e r  ~ 3. I t  is  obvious  tha t  th is  is  a d e -  
quate  i f  ( e r e )  2 << ~ << (e Re)  if2. If the f i r s t  i n e q u a l i t y  i s  not  s a t i s f i e d ,  then  t o g e t h e r  with t e r m s  of o r d e r  ~2 

one m u s t  c o n s i d e r  t e r m s  of  o r d e r  52~ which w e r e  o m i t t e d  in  Eqs .  ( 2 . 1 ) - ( 2 . 3 ) ,  whi le  when the s e c o n d  i n e q u a l -  

i ty  is  not  s a t i s f i e d  in Eq. (2.3) t e r m s  ~~3  cannot  be  ne g l e c t e d .  

3. S t a t i o n a r y  Wave R e g i m e .  F o r  s i m p l i c i t y ,  we wil l  c o n s i d e r  s t a t i o n a r y  t r a v e l i n g  waves  only  fo r  tg ~ ~< 1, 
T < e. As  is  we l l  known [ 12] {but not  a l w a y s  c o n s i d e r e d  in f i l m  flow s t u d i e s ) ,  in a n a l y s i s  of  a wave r e g i m e  
which is  c l o s e  to h a r m o n i c ,  to the a c c u r a c y  of  t e r m s  q u a d r a t i c  in the a m p l i t u d e  of the fundamen ta l ,  one m u s t  
r e t a i n  in the evo lu t ion  equa t ion  a l l  t e r m s  up to t h i r d  o r d e r  in the a m p l i t u d e .  T h e r e f o r e ,  we wi l l  use  an equa -  
t ion in the f o r m  of  Eq. (2 .3) .  Choos ing  the l ong i tud ina l  s c a l e  equa l  to h 0 (e = :[), we r e w r i t e  Eq. (2.3) in the 
f o r m  

~/._~_0(p 3 ( i~ ,~0 ,__~ , ,  - ~ x " v A ~ - ~ - B ' ~ i z  ~ - ~ 0 ~  ~a~ 0, A = 6 - R e - - t g a , ;  B =wec~. (3.1) 

If a s t a t i o n a r y  p e r i o d i c  r e g i m e  is  e s t a b l i s h e d  in the  s y s t e m ,  c h a r a c t e r i z e d  by a wave l eng th  h, then we 

have 

.% h 0 
(p ~ , r  k = 2 a ~  (3.2) 

I 

w h e r e  k, a ,  and X a r e  r e a l ,  and the f ac t  that  ~ is  r e a l  g i v e s  ~ - n  = 'bn, w h e r e  the a s t e r i s k  de no t e s  the c o m -  
p lex  con juga te .  L i m i t i n g  o u r s e l v e s  to t e r m s  of o r d e r  q = ~14~-1 = t ~112, we c o n s i d e r  in Eq. (3.2) on ly  h a r -  
m o n i c s  with ]n[  _< 2. F r o m  Eqs .  (3. t ) ,  (3.2) we ob ta in  

[i (o) - -  3k) ~- B k  4 - -  A k  ~1 (I)1 - -  6ik@0qbl - -  6ikO_~(1)~ - -  3 i k ~ _ l ( D  ~, = O~ 

[i (o) - -  3k) -}- 8 B k  ~ - -  2 A k  ~] r  - -  3ik(1)~ = 0. " (3.3) 

F r o m  this  i t  fo l lows  tha t  

i ( a ) _ 3 k ~ ) . . b B k , _ A k ~ . . } _ [  t8~2 ] i (c0.-- 3k) -1- 8Bk a - -  2Ak i" - -  3 ik  q - -  6ik(Po = O. (3.4) 

Th i s  l a s t  equa t ion  de f i ne s  co (and conseque n t l y ,  bo th  ~ and  y )  a s  a func t ion  of  the d i m e n s i o n l e s s  wave  
n u m b e r  k and the s q u a r e  of  the a m p l i t u d e  q. A s  q - -  0, f r o m  Eq. (3.4) we ob ta in  the f a m i l i a r  d i s p e r s i o n  equa -  
t ion,  fo l lowing f r o m  l i n e a r  t h e o r y  (we u s e  r ~ q ) .  In the c a s e  c o n s i d e r e d ,  c o n s i d e r i n g  the s m a l l n e s s  of  q, we 

w r i t e  ~ = 121(k) + ~ 2 ( k ) q ,  7 = F l ( k )  + F2 (k )q .  

The s t a t i o n a r y  r e g i m e  o b v i o u s l y  c o r r e s p o n d s  to a z e r o  o s c i l l a t i o n  i n c r e m e n t ;  f r o m  th is  we have y = 0 
fo r  the two unknowns k and q. We ob ta in  the  s e c o n d  equat ion f r o m  the r e q u i r e m e n t  tha t  th is  va lue  c o r r e s p o n d  
to the m a x i m u m  va lue  of  y ,  c o n s i d e r e d  a s  a funct ion  of  k fo r  f ixed  q [12] .  Th i s  r e q u i r e m e n t  is  a l s o  equ iva l en t  
to the cond i t ion  of m a x i m u m  q c o n s i d e r e d  a s  a funct ion  of  k. Thus ,  we have two equa t ions  def in ing  k and q: 

FI(i~ ) + F z ( k ) q  = 0, d r t ( k ) / d k  + d F 2 ( k ) q / d k  = 0. 

The c a l c u l a t i o n s  can  be s i m p l i f i e d  by  not ing  tha t  the va lue  of  ~2 d i f f e r s  l i t t l e  f r o m  the va lue  ~0 = 3k, ob -  
t a ined  f r o m  l i n e a r  t h e o r y .  Th is  p e r m i t s  n e g l e c t  Of the quan t i ty  i (~ -- 3k) in  the t e r m  in Eq. (3.4) p r o p o r t i o n a l  

to q, so  tha t  to the  s e l e c t e d  a c c u r a c y  we ob t a in  
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r~(k) = A k  ~ - -  Bk4,, . F2(k) = t8(A - -  7Bk~)-~, ,  

and the equat ions  for  k and q take on the f o r m  

q = ( k ~ / l S ) ( A  - -  B k 2 ) ( 7 B k  2 - -  A),; 

(A  - -  2Bk~")(7Bk 2 - -  A )  + 7 B k ~ ( A  - -  B k  2) = O. 

The solut ion of the second  equat ion of Eq. (3.5) has the f o r m  

( 16 -~-Vt~ BA.)I/' f A  `~/2 
k = - o,833(- ) , 

so that  the squa re  of the ampl i tude  

(3.5) 

(3.6) 

q ..~ O , 0 4 6 A 3 / B .  ( 3 . 7 )  

Taking eP l = ~ q ,  which can a lways  be done by a p p r o p r i a t e  choice  of the o r ig in  in t ime o r  longitudinal  co-  
ordinate ,  f r o m  the second  equat ion of  Eq. (3.3) we obtain an  e x p r e s s i o n  fo r  ~2- The value of q~0 is defined 
f r o m  the condit ion that  the d i m e n s i o n l e s s  l iquid flow ra te  in the f i lm m u s t  equal its spec i f ied  value (unity in 
the va r i ab le s  of Eq. (1.1)) even in the p r e s e n c e  of  waves .  As a resuI t ,  to the s a m e  a c c u r a c y ,  with c o n s i d e r a -  
tion of Eqs.  (3.6),  (3.7),  we obta in  

(I) o ~ - - 2 q ,  q)~ ~ 0.935B1/~qi/A3/0- ~ O,043Aa/2UBJ/~" (3.8) 

T h e r e f o r e ,  a c c o r d i n g  to Eqs.  (3.4),  (3.8) the wave ve loc i ty  has the f o r m  

c = O / k  = 3(i --  3q) ~ 3(t - -  O , i 3 8 A ~ / B ) ~  (3.9) 

and the quant i ty  q~ takes  on the fol lowing final f o r m :  

A3/2 Aa 0.429 ~ cos k (x  - -  ct) -~- 0.086 ~ sin 2k (x  - -  et) ,  ~p ~ -- 0.092 -B- -t- B 

with k and c being defined by Eqs. (3.6), (3.9). 

We note that k from Eq. (3.6) differs significantly from the value k 0 = (A/2B)I/2 ~ 0.707 (A/B)I/2, which 

follows for maximum growth waves from linear theory. The condition for instability of nonwave laminar flow 
has the form A > 0. When it is satisfied a "soft" type of stability loss occurs: with increase in the "super- 
criticality" of A the value of q increases monotonically from zero [ 12, 13]. The stationary wave regime con- 
sidered proves to be completely defined, in contrast, for example, to the results of [ I, 2]. 

The condi t ions  e << 1 and @/2 << 1 have the r e spec t i ve  f o r m s  (A/B)  1/2 << 27r ~ 10 ~/2-  10 and A ( A / B )  1/2 
<< 101/2 - 10. The condit ion a <~ q, which al lows us to neg lec t  (at Re ~ 1) all  t e r m s  excep t  l i nea r  ones in the 
por t ion  of Eq. (2.3) which is p ropo r t i ona l  to e, now takes  on the f o r m  Aa/B~ > (A/B)  1/2, i .e,  A 5/2 2 B~/2. If with 
s l ight ly  s u p e r c r i t i e a l  A the p a r a m e t e r  B is  much  g r e a t e r  than A 5 (as m u s t  be the c a s e  fo r  l iquids with high 
su r f ace  tens ion  o r  under  lowered  grav i ta t ion) ,  t e r m s  quadra t i c  in ~0 mus t  be c o n s i d e r e d  in this po r t ion  of  the 
equation. In conclus ion ,  we note tha t  a t t emp t s  (see,  fo r  example ,  [ 11, 14]) to obtain the coef f ic ien ts  f o r  the 
h igher  h a r m o n i e s  in Eq. (3.2) by ana lys i s  of equat ions  of the f o r m  of Eq. (3.1) a r e  mean ing le s s ,  s ince  the a c -  
c u r a c y  of  the equat ion is exceeded.  
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EXPERIMENTAL STUDY OF BUOYANT VORTEX 

RINGS 

B. I. Zaslavskii and I. M. Sotnikov UDC 532.517.4 

Experimental  study of the dynamics and the internal s t ruc ture  of buoyant vor tex- the rmals  was initiated 
in the 1950s. A review of work done outside the Soviet Union is given in [1]. Problems associa ted with the mo- 
tion of thermals  are  discussed in Soviet publications [2-5] .  Experimental  data f rom ear ly  as well as those ob- 
tained f rom later  studies do not cover many aspects  of these phenomena and even contradict  each other in 
some cases.  The objective of the present  investigations is to study as completely as possible the motion of 
thermals  for various values of initial weight defect. The experimental  setup and the test  resul ts  are  descr ibed 
in this paper. 

1. The setup is shown in Fig. 1. It eonsists of: a 1.2• 1.2x 5 m airtight container with t ransparent  side 
walls; a device (D) for producing thermals ;  pneumatic and measurement  sys tems .  The last  mentioned consists  
of hot-wire anemometers  (DISA), movie-(K) and photographic camera ,  s troboscope,  and also an apparatus for 
visualization of thermals .  

The device to produce thermal  consists  of a nozzle with a funnel shaped tip 4 to blow soap bubble and a 
t r igger  to puncture the membrane.  

The nozzle is connected b y a  rubber  hose to the smoke genera tor  (Gd) and fur ther  to the mixer  (M) 
where helium, nitrogen, and oxygen were fed f rom tanks. The part ial  p r e s su re s  of each gas in the mixer  were 
measured with the manometer  MVP-2.5 which enabled the determination of density with less than 1% e r ro r .  

The density was varied in the tests by altering the proport ions of helium and nitrogen. Oxygen consti-  
tuted 2.5~c by volume in all the tests. It was supplemented by tobacco smoke which was introduced into the 
soap ~ubble for coloring it. A small  amount of oxygen ensured low smokiness and, consequently, small  re la -  
tive e r r o r s  in the final determination of the initial density of the thermal.  

IThe t r igger  consists  of an e lectromagnet  2, a spoke 3 with a needle at its end. 

The film is ruptured when the needle punctures the bubble during its descent which began after  the ap- 
plication of the start ing voltage to the e lec t romagnet  and lasted about 0.02 see. 

Besides the device for producing thermals  (setup at the bottom of the container) there is a ver t ical  sup- 
port  5 to which thin s t reamlined probes 6 are attached at three levels. The anemometer  wires are  fixed to the 
probe tips in such a way that their  axes coincide with the central  axes of the nozzle and the container.  Leads 
from the hot-wires  are  brought out f rom the top of the container and connected to hot-wire  anemometers  whose 
signals were recorded  with automatic r eco rde r  H 338. 

Flow visualization of the mixture colored by smoke was made with the help of electronic flash (Fv) and 
optical knife l ase r  beam (L) LG-106M which is propagated in a fan shaped manner with the help of the convex 
m i r r o r  3. The thermal  visualized in such a manner was photographed during its motion by the cameras  Ft and 
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